脱盐过程废水cod变化
电渗析脱盐过程共更换了5次汲取液,测量每次更换汲取液后废水的cod,以及整个脱盐过程结束时废水的cod,分别为3 850、3 740、3 680、3 640、 3 610、3 590 mg/l。结果表明,废水的cod随脱盐过程的进行而有所降低,但降低幅度较小,废水初始cod为3 850 mg/l,当脱盐过程结束时为3 590 mg/l。并且由cod的变化可知,次更换汲取液后废水cod变化大,之后变化量越来越小。
这是因为废水中的cod仅由---构成,---为中性有机分子,并不会在电场作用下发生定向迁移,但由于本实验设置纯水为汲取液,故存在---分子向汲取液迁移的浓度差推动力。而离子交换膜具有扩散性能,---分子可在浓差扩散作用下透过离子交换膜进入汲取液,使废水的cod降低。但浓差扩散的速率很小,故---迁移量不大,废水cod降低幅度较小。并且,该浓差扩散量在浓度差基本恒定的情况下,仅与操作时间有关,脱盐过程中次更换汲取液后操作时间长达70 min,之后更换汲取液后操作时间越来越短,故次更换汲取液后废水cod变化大,之后变化量越来越小。高浓度水蒸发器
青岛蓝清源利用采用汲取液的电渗析-活性污泥法组合工艺处理含盐废水,在降低污水含盐量后,采用活性污泥法能够大幅度降低污水cod。针对实验含盐废水,经过5次更换汲取液,160 min处理后废水总含盐浓度由22 000 mg/l降至1 630 mg/l,除碳---根离子脱除率接近70%外,低浓度废水蒸发器制造设备厂家,废水中其他离子的脱除率均在90%以上。对电渗析脱盐后废水采用活性污泥法处理,通过逐步提高废水中cod的方式对其进行驯化,经14 d驯化后cod降解效果明显,24 h去除率维持在85%左右。此电渗析-活性污泥法组合工艺为高盐废水的处理提供了一种新方法。高浓度水蒸发器
含盐废水的工艺流程
含盐水首---入冷凝器中预热、脱气,而后被分成两股物流。一股作为冷却水排回大海,另一股作为蒸馏过程的进料。
进料含盐水加入阻垢剂后被引入到蒸发器的后几效中。料液经喷嘴被均匀分布到蒸发器的顶排管上,然后沿顶排管以薄膜形式向---动,部分水吸收管内冷凝蒸汽的潜热而蒸发。
二次蒸汽在下一效中冷凝成产品水,剩余料液由泵输送到蒸发器的下一个效组中,该组的操作温度比上一组略高,在新的效组中重复喷淋、蒸发、冷凝过程。剩余的料液由泵往高温效组输送,后在温度高的效组中以浓缩液的形式离开装置。
生蒸汽被输入到一效的蒸发管内并在管内冷凝,管外含盐水产生与冷凝量基本等量的二次蒸汽。
由于第二效的操作压力要低于一效,二次蒸汽在经过汽液分离器后,进入下一效传热管。蒸发、冷凝过程在各效重复,每效均产生基本等量的蒸馏水,后一效的蒸汽在冷凝器中被含盐水冷凝。
一效的冷凝液返回蒸汽发生器,其余效的冷凝液进入产品水罐,各效产品水罐相连。由于各效压力不同使产品水闪蒸,并将热量带回蒸发器。
这样,产品水呈阶梯状流动并被逐级闪蒸冷却,回收的热量可提高系统的总效率。被冷却的产品水由产品水泵输送到产品水储罐。这样生产出来的产品水是平均含盐量小于5mg/1的纯水。
青岛蓝清源水中各种离子的迁移行为受很多因素影响,如膜的性能、电解质浓度、操作条件等。当不存在离子交换膜时,离子在电场中的迁移速率取决于该离子的电荷量和的比值(e/m)。而在电渗析过程中,离子交换膜的存在会对离子的迁移速率产生重要的影响。不同离子在聚乙烯异相阳膜中的淌度大小为k+>;na+>;mg2+,淌度越大,说明离子在膜中迁移阻力越小,迁移速率越快。其次,离子通过膜的难易程度取决于离子的水合半径大小和离子的电荷量。由于膜中供离子通过的孔隙大小一定,离子水合半径越大,越不易通过膜,比较离子的水合半径大小为mg2+>;na+>;k+,hco3->;cl-。而当离子电荷量增---,导致离子的电量/半径比增加,也会影响离子穿过膜的速率。此外,碳---根为弱酸根离子,本身电离程度较低,也是导致其较低的迁移速率的原因之一。高浓度水蒸发器
菏泽高氨氮废水蒸零排放加工设备节能工艺-青岛蓝清源由青岛蓝清源科技有限公司提供。菏泽高氨氮废水蒸零排放加工设备节能工艺-青岛蓝清源是青岛蓝清源科技有限公司升级推出的,以上图片和信息仅供参考,如了解详情,请您拨打本页面或图片上的联系电话,业务联系人:高工。同时本公司还是从事mvr蒸发器,多效蒸发器,高盐废水蒸发器的厂家,欢迎来电咨询。
联系我们时请一定说明是在100招商网上看到的此信息,谢谢!
本文链接:https://tztz100000223760.zhaoshang100.com/zhaoshang/218452301.html
关键词: